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CILIARY INTER-MICROTUBULE BRIDGES
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ceon micrographs of both negatively contrasted and thin-sectioned lamellibranch gill
covab several new features of ciliary fine structure, particularly in regard to those struce
Taning intermittent or permanent crossbridges between microtubules, Negative-
~ting reveals the presence of a 14°5-nm repeating bridge between the central micro-
- Pronmal views of negatively contrasted dynein arm rows along subfibre A show that the

- 23-nmorepeat) in the outer row are displaced in a left-handed manner by 3—4 nm with

vrathase in the inner row, This displacerment is probably a direct refiexion of the helical
©ubunit lattice of the subfibre, Interdoublet (nexin) links are seen conneeting adjacent
Sl ubfibres at intervals of 86 nm along the doublet. Negative—con?rasting shows thin,
Hlastic connexions holding the doublets together, When seen in longitudinal thin
- the interdeubler links are often tilted to considerable angles, indicaring they may have
~hC response to interdoublet siiding.

CIVCTHON

motile g4+ 2 axoneme of cilia, flagella and sperm tails is an interconnected
© ot microtubules having no fewer than 5 kinds of structures forming either

THlent or permanent crossbridges between microtubules (see Warner, 1974, for

*+ Studies by Summers & Gibbons (1971, 1973) and Gibbons & Gibbons (1972,
v clearly shown that the generative force for flagellar motility results from
TP hydrolysis) crossbridge formation between adjacent doublet microtubules.
schanochemical interaction results in sliding displacement between the

et ahich s simultaneously converted into propagated bending motion.

‘v we examined the role of the radial spokes in the sliding-bending conver-
Warner & Sarir, 1974) and concluded that the spokes, in lamellibranch gill cilia,
e Primary source of the internal shear resistance required to convert active
blet sliding into regulated, propagated bending of the organelie. Although

THOV presented many new details of ciliary fine structure, the observations were

T imited to the radial spoke-central sheath complex,
‘e bath thinssectioned and negatively contrasted, isolated gill cilia, it is now

U visualize the presence of a bridge between the 2 central microtubules, to

ootk ot N . . . .
U veanization of the interdoublet or nexin links and to characterize the

U of the 2 rows of dynein arms along the doublet subfibre A
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102 F. D. Warner

MATERIALS AND METHODS

Lamellibranch gili cilia from the genus Unio were used in this study. For electron micr
scopy, gill tissue was isolated and fixed in 2% glutaraidehyde adjusted to pkl 74 with 23w
sodium cacodylate for 1'3 h at 4 “C. Tissue was postiixed in cacodvlate-buffered 1 o5 050,
45 min, dehydrated in an ethanol series and embedded in Epo
for 13 min in § % aqueous urany} acetate followe
citrate.

For some preparations, gill tissue was decitiated and the cilia p
fugation, Purified cilia were demembranated in Triton Yoroo and either fixed as above
negatively contrasted with 2 % aqueous uranyl acetate at p
functionally intact; that is, t
Details of the isclation, purt

paper.

OBSERVATIONS AND PISCUSSION

The movement of axonemal microtubules during ciliary or flagellar beating .
y dynamic process, since each doublet microtubule slides v~
her doublet and with respect to the central microtubule comp:

be regarded as a ver

respect to every ot
even though the major part of this sliding may be only 2 passive response to the art

sliding generated between any 2 doublets at a particular instant during the beat ¢
Since we know that each linear element moves with respect to all other linear elom
(Warner, 1972} Warner & Satir, 1974), all structural crossbridges between s

tubules, whether intermittent or permanent, ymust be brought into the concy
framework of the sliding filament model of ciliary motility (Satir, 1g68).

Central micvotubule bridge

Lamellibranch gill cilia have a prominent “hridge’ which oceurs between doi
pumbers g and 6 and forms the main morphological marker for determining onc’

tion of the cilium (Gibbons, 1g61; Satir, 1965, 1968). The bridge appears to!
manifestation of arm stracture between these doublets, that is, the arms of both?
of doublet § appear to be permanently crossbridged to doublet 6. The brid
readily apparent in transversely sectioned cilia (Figs. 1, 111 4) and individual el
repeat at 23 nm along the A subfibre (Warner & Satr, 1974)-

Our previous study of lamellibranch gill cilia (Warner & Satir, 1974) descrils
detail the organization of the central sheath-microtubule complex. The gheath
sists of paired rows of projections along each of the 2 central microtubules to whi
attached, intermittently, the radial spoke heads. Longitudinat thin sections sy
the presence of a periodic bridge between the central tabules {as have ABMETHus’
studies, e.g. Gibbons, 1g61) but superimposition of the sheath projection rows:
also account for the bridged appearance, particularly since the measured
the same for both projections and the bridge region.

When seen in transverse sections, the centrai sheath projections, ajthoug”
clearly resolved, form a circular profile around the central tubules {Fig. 1) amd !
ge joining the 2 tubules at the axoneme a3
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or.a straightforward answer regarding the presence of a central microtubule bridge
qeovided Dy negatively contrasted images of the central complex,

i 1. 2 shows an intact central tubule-sheath complex and again it is not possible to
sorate the image of the sheath projections from the bridge region. Fig. 3 shows a
el pair with most of the sheath material solubilized except that along 1 tubule, a
-ule doublet remains attached to the sheath via the triplet radial spokes. Fig. 4 shows
central pair with all sheath material removed: clearly there remains a prominent
. -nm repeating bridge between the 2 tubules. Fig. 5 shows a similar preparation
.ept that the central pair has pulled apart and the bridge elements remain attached

apfy one of the tubules. Although it appears from these preparations that only a
e ¢ row of bridge elements occurs between the central tubules, the same arguments
tapply to possible dynein arm superimposition (see next section) also apply here,

wen arm organization

Al maotile g + 2 cilia, flagella and spermtails have an A'TPase, dynein, located in the
s onderly rows of arms of subfibre A of each doublet microtubule. The dynein arms
e the principal and probably sole source of mechanochemical interaction which
~~alts in doublet sliding (Summers & Gibbons, £971, 1973). This mechanochemical

avity: was beautifully demonstrated by Gibbons & Gibbons (1973) when they
wctively solubilized only the g outer rows of arms and observed, in ATP-reactivated
“aella, that the axonemes then beat with precisely one-half the frequency of un-
wuated control flagella,

he precise organization and periodicity of the dynein arms along a given doublet

+ remained uncertain, mainly because it is difficult both to preserve and to dis-
tughiish between the 2 rows when seen in longitudinal thin sections, and negative-
wtrasting usually results in their solubilization. The reported periodicity of arms
~ng 2 doublet spans a considerable range (12-24 nm}, which has caused Chasey
72} o suggest that the arms of 1 row may be half-staggered with respect to those
wihe other row. Thus the 12-24 nm range could be easily accounted for, if in some
wtances both rows had been seen superimposed while in other instances they had
weinseen individually,

Both negatively contrasted and thin-sectioned arm rows are seen in Figs. 6 and 15,
Pl arms repeat at 23 nm, centre-to-centre along the subfibre. Although the possi-

ity of superimposition of the 2 adjacent rows cannot be ruled out in images such as

' 0, it appears that only a single row is represented. To test for superimposition
#hitact, and to provide a straightforward answer as to arm period and inter-row

whitionships, frontal views of the arms are required; that is, both rows of arms along

~sngle doublet subfibre A need to be viewed from the position of the opposing B

“ibfibre. Figs. 7 and 8 show frontal views of the dynein arm rows from doublets at the
Hlues of negatively contrasted, demembranated but structurally intact cilia simifar to

b6 Two rows can be seen along each doublet and the arm periodicity in each row

T A30mocentre-to-centre. Occasionally the arm rows have an obvious scalloped

wpearance (Fig. g), which probably results from overlying regions of incompletely
wlubilized membrane. It is apparent in Figs. 7 and 8 that the 2 rows are slightly
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displaced, that is, the arms in one row are not in lateral register with those of theoth-
row. Although precise measurement i difficult, the arms in the outer rOW Appear ak

displaced ina Jeft-handed manner by 3-4 Db (1o degrees) with respect to their imu:
diate neighbour in the inner row. The 2 yows ar¢ separated by 13T 6nm. This displac
ment is consistent with the helical displacement of tubulin subunits found o the
subfibre by Amos & Kiug (1974)- It s reasonabie to think that the arms are preci

positioned on the A subfibre with respect to ane of the helical famiiies of the tuba”
subunit lattice. The observed arm displacement matches most favourably with the

start, left-handed family, assuming that 23 protofilaments jie between the 2 row:
arms. However, optical diffraction data are NECESSATY to match precisely the arm an

with the tubulin helix.
The high frequency of appearance of ¢he double rows of arms (sometimes seer

both sides of the same axoneme) eliminates the possibility of the image represents
only the doublets -6 bridge. Although usually the arms arc not visible on fragmor:

doublet microtubules, secasionally a prominent 23-Hm repeat can be seen whith
probably related to one of the rows (Fig. 10).

Interdoublet link organization
Thin connexions, termed interdoublet, nexin or circumferential links (for rov
see Stephens, 19745 Warner, 1974) are often scen In cross-sections of eili

flagella. The links lie near the centrifugal side of the inner dynein arms and vt

about 18 nm to the adjacent B subfibre {Figs. 11-14). The visibility of the hnt
enbanced i demembranated axONEmMes, presumably because of the loss of &
structural matrix material from the organelle (e.g. cOMPare Figs. 11 and 12} ?

frequency of appearance of the links in a given ciliary cross-section is low (=~ &

Figs. 11, 133 Tig. 1218 exceptional), suggesting that their periodicity along the dov
is in the range of typical section thickness (70100 nm). The inter-doublet
should not be confused with similar but structurally prominent connexions bt
doublet microtubules that are restricted 10 the region immediately distal to the l
plate of some cilia and flagella (g Chlamydomonas flagella; Witman, Car-
Berliner & Rosenbaum, 1972)-

Stephens (1970) attempted an initial characterization of the interdoublt!
material in Arbacia sperm fagella and cermed the isolated protein nexin, His thet”
fractionated preparations consisted largely of A subfibres to which adhered clur
material repeating at about 100 nm along the subfibre. When negatively statned
clumped material seemed to hold adjacent A subfibres together on the carbon suf
ing film, and Stephens concluded that the material, nexin, joined adjacent -
fibres in the native osganclle, rather than joining A 0 B. Similar interpretation™
been made on sectioned cilia (Linck, 1973 b) although the published micrott
generally do not substantiate that conclusion.

1n the present study, cross-sections of isolated, Jemembranated cilia indicatt

the interdoublet fink joins A subfibres to adjacent B subfibres, and gimilar ¥

appear in DUIETous other studies {e.g, Gibbons & Fronk, 1972; Gibbons & G
1g73; Linck, 19734, b). Furthermore, when the links are occasionally

¢
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sl sections (Fig. 15), they still appear to jqin A to B. The apparent
:J”::n:n\ con Stephens’ (1970, 1971, 1974) observations and th‘e present study
) ,Ai rierences seem unlikely) can probably be resolved b}f analysis of radml. sp(?kle
ong the A subfibre. Negatively contrasted preparations of co%iapsed gill Cilla
| , ca the $6-nm repeat triplet grouping of the radial spokes (Figs. 3, 16) The
soever, are often collapsed together into repeating clumps of material along
,};sihra' (IFig. 16). The spokes appear to hold the doubletslﬁrr‘nly tc?gether on the
‘\.:mmrriﬁg film, which suggests that the spoke material is ‘stld.cy’ and has
sty {probably artifactual) for other axoneme components or mwmtubu]c.ts.
-~ ame of Stephen’s (1970) study, it was not generally known that the radial
wvre 4 major axonemal component and it is possible that the nexin links were
- pomps of clumped radial spokes. His micrographs of negatively coptragted A
nevin links (Stephens, 1971) strongly resemble the spoke groups in Fig. 16,
st resemble the thin connexions observed in this study (see befow).
ey contrasted gill cilia occasionally show thin connexions joining the A and
s of adjacent doublets (Fig. 17). These thin links are somewhat irregular in
~tv, but the smallest separation measured is about 50 nm, while the largest is
. Ttis obvious that the connexion has stretched considerably and in some
wms the links may span as much as 300 nm between doublets. Similar con-
were seen by Linck (19734 in negatively contrasted Adequipecten gill cilia,
1,1t should be cautioned that the thin connexions visible in Fig. 17 cannot be
~ocally identified as the interdoublet links appearing in thin sections (Figs.

utly, Dallai, Bernini & Giusti (1973) described interdoublet connexions in the
e of Sciara sperm flagella, which do not have the usual g+2 organization,
~~ectinns, the links clearly join adjacent A and B doublet subfibres in a position
“ta that oceurring in g +2 cilia and flagella, When negatively contrasted, the
ppear as a thin connexion between subfibres with a regular repeat of a‘(?out
these links are also very elastic, often spanning 200300 nm separations
n doublets. Tt remains to be determined if these connexions are homologous
aterdoublet links of g+ 2 axonemes,
+onthe interdoublet links are seen in longitudinal thin sections, their pertodicity
o regular, typically lying at about 86-nm intervals along the doublet {Fig. 15).
nksare only visible in the region where the section plane appears to pass between
“eorand outer rows of dyncin arms and they usually lie at angles other than go°®
\ subfibre (see below).

- vnns discussions of the interdoublet links (Warper, 1974; Warner & Satir, 1974)

ted that, like any connexions between sliding microtubules, the links must be

~ tieof some manner of displacement in order to permit interdoublet sliding, Two

~ile mechanisms for this displacement exist: (1) the links function as part of a

“anachemical event, perhaps interacting with the inner row of dynein arms; or
“w lisks are inherently elastic and thus capable of considerable angular displace-

- which must be at least as great as the maximum relative movement between
it doublets, No evidence exists in support of the first contention and little can
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be said except ¢

increase the complexity

F. D,

to the sliding-bending mechanism.

Certain evidence

from the observation of extensive stretching 0

supports the idea that the links may be inherently elastic, ap.-
f intermicrotubule connexions in ne: .

tively contrasted preparations (Fig. 17;

shows several interdoub

uniformly tted to

(interdoublet stiding absent) orientation of
that some interdoublet displ

doublet, it appears
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and B subfibres (18 nm) and the link angle (45°),
1972; Warner & Satir, 1974)
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geometrical expressions (Warner,
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All figures {except Fig, 15) are at a magnification of x 180000,

Fig. 1. Transverse section of an isolated, demembranated cilium showing an apparent
bridge between the 2 central microtubules {arrows), The central tubule.sheath com.
plex on the right {em) has become separated from the remainder of the axoneme. b,
doublets 5-6 bridge.

Fig. 2. Uranyl acetate negatively contrasted central microtubule-sheath complex. The
overlying sheath projections obscure the bridge region between the 2 tubules.

Fig. 3. Central microtubule-sheath complex (¢m} to which a single doublet (a, b} re-
mams attached via the §6-nm repeating groups of triplet radial spokes (brackets).
Most of the sheath projections have been solubilized, but because of the plane of
tubule colfapse, the bridge region is not clear,

Fig. 4. Central pair microtubules from which all sheath material has been solubilized,
The 2 wbules remain held together by the bridge projections repeating at 143 nm
(arrows).

Tig. 5. Central pair microtubules from which all sheath material has been solubilized,
The 2 microtubules have separated but the bridge projections remain attached to one
of the tubules (arrows).
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Fig. 6. Uranyl acetate negatively contrasted, intact but demembranated cilium, Single
rows of dynein arms repeating at 23 nm afe visible at both sides of the axonem
{arrows}.

Figs. v, 8. Frontal views of subfibre A from a doublet at the edge of an intact cilium
Both the inner (i) and outer (o) arm rows are visible: the arms repeat at 23 nm in both
rows. Arms of the outer row appear to be displaced by 3—4 nm in a Jeft-handed
manner with respect to the arms in the inner row (lines).

Fig. g. Frontal view of a doublet where it appears that incompletely solubilized moem-
brane has collapsed over the arm rows resulting in a characteristic scalloped appear-
ance {arrows). The scallop repeat is 23 num,

Fig. 10. Fragmented doublet microtubule showing a prominent 23-nm repeat {arrows:
that is probably related to one of the arm rows. The repeat appears to be contrasted iv
the cleft between the 2 subfibres of the doublet.
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Fig. 11, In situ cilium seen in transverse section. Interdoublet links (arrows) con-
nect adjacent A and B subfibres in the region of the inner dynein arms. "The direction
of view is from cilium base-to-tip with the doublets §~6 bridge (5} located in the
6 o’clock position,

Figs. 12—14. Isolated, demembranated cilia seen in varying degrees of disassociation,
Inferdoublet links can be seen in all cilia but are particularly clear in Fig. rz, Cilium
orientation and bridge (b) position is the same as in Fig. 17.

Fig. 15. Longitudinal section in the region of 3 adjacent doublets of an in siry ciliu.
Dynein arms are visible along 2 of the doublets (arrows). Several interdoublet links
flines) can be seen connecting adjacent @ and b subfibres, The links repeat at 86 nm
along the subfibres and are positioned at an angle of about 457 from the perpendicular,
indicating that some sliding displacement has occurred between the 2 doublets.
% 160000,
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